Announcement

Collapse
No announcement yet.

Gary's "Complete Advanced" SSG Build

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Hi Rodolphe,

    Just a point for you or anyone else that's following this thread to remember is that comparing AH recovered to AH in is not actually a true measure of the COP. The average voltage of each process must also be considered and watts out vs watts in is the true measure of COP.

    Gary Hammond,

    Comment


    • Hi Gary,

      In response to #188:
      #1 The falling away of the current flow through the coil results in a back EMF being applied backwards across the transistor and run battery. The value of this is only about 2/3 the value of the applied voltage and can therefore not recharge anything. BMEF is best understood by studying conventional electric motors. Peter Lindemann explains this well in this video. http://www.electricmotorsecrets.com

      #2 When the current flow through the transistor turns off abruptly, the surrounding magnetic field collapses and tries to keep the current flowing in the same direction through an inductive process similar to inertia. Now the coil changes from being an energy sink to being an energy source and pulling in some free energy with it. This results in the voltage across the coil reversing polarity and rising as high as it must to find a conductive path to dissipate the energy. If there is no conductive path available this voltage can reach thousands of volts until something breaks! This is the energy we harvest with fast diodes and a battery.
      The video’s you refer to of PL I have not watched/bought yet, will add it to my list. I’m not sure if I understand you completely here since it gives me the impressions that two current (#1, #2) run in opposite directions at the same time… I’ll also ask my electrical engineering friend about this; with a piece of paper in front of us he might be able to explain this to me relatively easily.


      In response to #194:
      The reverse current only goes through the diode causing a .4 to .6 volt drop. This is the reverse bias across the transistor base/emitter junction that turns it off. There is no appreciable current flow in the reverse direction through the transistor except for a few micro-amps forcing the electrons and holes away from the PN junction. The higher this reverse bias shutoff voltage, the faster and more completely the collector current is shut off. The emitter/base break down voltage is 5 volts. If this is exceeded damage will occur. This device is not designed to operate as a zener!
      Thanks for your elaborate response on this. Maybe I expressed myself a bit to crude, but basically what you write above is what my friend of mine told me/tried to explain to me.
      I had another look at the specsheet, and the breakdown voltage (Vebo) is in indeed stated there as 5V.
      I was wondering where you got the value of 0.4-0.6 for voltage drop over the diode? Because in the specsheets of the 1N4007 that I have the forward voltage (Vf) is 1.1V.


      It has been long enough ago that I don't recall how many days in a row, one day apart, I ran these tests. But I think the results were fairly consistent, as best I can remember.
      I understand… my experience at least is as I described, that normally the COP only goes down in consecutive runs (meaning every day 1 run). However, I after doing 2 consecutive runs (in 2 days), I waited 3 days and did only then a third run, and the COP went slightly up again:
      -1st run COP 1.08
      -2nd run COP 0.79
      -3rd run COP 0.81
      As I mentioned before; if I cannot get constant results, there is no real way for me telling what influence changing certain parameters have at the moment.


      But I have managed to get two of my machines to run continuously with the four battery split the negative swapping arrangement. This appears to be actually running at unity as the batteries always recharge to the same voltage in about the same time. This method uses the run current plus an inductive spike to charge the one battery that's in the charge position. Then the next cycle it is at rest. So each cycle one battery is resting, two batteries are supplying the run current, and one battery is being charged. Every cycle they each advance to the next position.
      This was in C.G. mode (without cap dump)?

      I think he was running in straight radiant mode. No cap-dump. This is a very different machine than what we are using and he mechanically swapped only the two batteries every 3 minutes. They didn't have time for the run battery voltage to drop between cycles. This was all done at higher voltage and higher speeds with multiple air wound coils and faster, lower impedance switching. Totally different animal!
      Fair enough; we leave that animal out of comparisons then (for now ). But thanks anyway for your comments/info on it.

      Comparator, Cap dump
      I’ll switch to following thread to continue on the cap dump circuit, since I think it is more appropriate there:

      https://www.energyscienceforum.com/f...ap-dump/page10

      Best regards,
      Rodolphe
      Last edited by pearldragon; 11-05-2022, 07:13 AM.

      Comment


      • Hi Rodolphe,


        I was wondering where you got the value of 0.4-0.6 for voltage drop over the diode? Because in the specsheets of the 1N4007 that I have the forward voltage (Vf) is 1.1V.
        .4 to .6 is the normal commonly accepted forward voltage drop for most Silicon PN bipolar junctions. The chart I found for a multicomp 1N4007 showed a range of .6 to 1.0 depending on current flow with a rated maximum in the spec sheet of 1.0 volts at it's1 amp max rated current flow. And when I originally built my first machine, I checked all the diodes I had for forward voltage drop and chose only the lowest value ones to match and use. in my SSG. I used a PEAK ATLAS DCA55 semiconductor component analyzer to do this with. They all fell in that .4 to .6 volt range. In fact I just now checked another one and it shows .68 volts at 4.73 ma. And I also just now checked an MJL 21194 transistor and it shows a .58 volt drop at 4.83 ma.

        This was in C.G. mode (without cap dump)?
        No. ............. This was with the run current flowing backwards through the battery being charged plus all the radiant spikes being applied to it as well. (NO cap dump). So actually a combination of both current and radiant charging. Peter Lindemann demonstrated this at the 2016 Conference and published a video of it. And RS also did a demo and video on the process the following year (2017).

        In response to #188:


        #1 The falling away of the current flow through the coil results in a back EMF being applied backwards across the transistor and run battery. The value of this is only about 2/3 the value of the applied voltage and can therefore not recharge anything. BMEF is best understood by studying conventional electric motors. Peter Lindemann explains this well in this video. http://www.electricmotorsecrets.com

        #2 When the current flow through the transistor turns off abruptly, the surrounding magnetic field collapses and tries to keep the current flowing in the same direction through an inductive process similar to inertia. Now the coil changes from being an energy sink to being an energy source and pulling in some free energy with it. This results in the voltage across the coil reversing polarity and rising as high as it must to find a conductive path to dissipate the energy. If there is no conductive path available this voltage can reach thousands of volts until something breaks! This is the energy we harvest with fast diodes and a battery.


        I don't think I explained this correctly. I'll try again. Any time current is flowing through the motor coils there is a direct voltage drop in the coil caused by that current flow (E=IR). This is the BackEMF and is always less than, and in opposition to, the applied voltage from the battery or power supply. This is what limits the actual current flow when the motor is running with no load applied. There is also an electro-magnetic field created outside of the coil windings that reacts with whatever other electro-magnetic field is present to cause motor rotation. This takes place in space, or in the aether.

        When the current stops abruptly, the BEMF will quickly disappear, but the collapsing electro-magnetic field will produce whatever voltage is necessary to try and keep the current flowing as explained above. This high voltage dissipation is what we want to capture and reuse.

        Hope this makes a little more sense than before. I don't always say it right the first time.

        Gary Hammond,
        Last edited by Gary Hammond; 11-05-2022, 05:54 PM.

        Comment


        • Hi Gary,

          Diodes, Fv,
          All clear thanks!


          Battery split and swapping arrangement
          “No. ............. This was with the run current flowing backwards through the battery being charged plus all the radiant spikes being applied to it as well. (NO cap dump). So actually a combination of both current and radiant charging. Peter Lindemann demonstrated this at the 2016 Conference and published a video of it. And RS also did a demo and video on the process the following year (2017).” Sorry, I didn’t read your previous comment on this correctly, since you basically described it there. I think we discussed this setup before already; it’s like in attachment 1?


          BEMF & Radiant spike
          Thanks Gary for explaining it some more. I’m still a bit struggling with it, as mentioned I’ll discuss it with my friend as well and will come back on this.


          Best regards,
          Rodolphe

          199 - Attachment 1.pdf

          Comment


          • Hi Rodolphe,

            I think we discussed this setup before already; it’s like in attachment 1?
            Yes, that's it. Except the top diode you have shown between the top of the coil and the negative terminal of the charge battery isn't needed and I didn't use.

            Gary Hammond,

            Comment


            • Hi Gary,
              In response to #198:
              I don't think I explained this correctly. I'll try again. Any time current is flowing through the motor coils there is a direct voltage drop in the coil caused by that current flow (E=IR). This is the BackEMF and is always less than, and in opposition to, the applied voltage from the battery or power supply. This is what limits the actual current flow when the motor is running with no load applied. There is also an electro-magnetic field created outside of the coil windings that reacts with whatever other electro-magnetic field is present to cause motor rotation. This takes place in space, or in the aether.
              When the current stops abruptly, the BEMF will quickly disappear, but the collapsing electro-magnetic field will produce whatever voltage is necessary to try and keep the current flowing as explained above. This high voltage dissipation is what we want to capture and reuse.
              Hope this makes a little more sense than before. I don't always say it right the first time.
              I’ve watched some Youtube Videos and read up / refreshed my memory on this topic by reading a bit in books I have here were these topics are discussed. I do now understand what you mean.
              In case anybody else was struggling also, these two YT movies I find very handy:
              https://www.youtube.com/watch?v=shJAV59NS6k
              https://www.youtube.com/watch?v=5mf4NmmLWnE

              My question regarding this topic stemmed from the scope signal we talked about in another thread a while ago (see attachment for visual aid):
              When I look at the scope signal (Radiant Mode), looking at section C, you explained to me that what was happening there:
              1-Remaining coil energy discharges the high voltage diode and fed to the secondary battery
              2-Generated voltage from the passing magnet
              3-Some coil ringing from the abrupt discharge

              It is especially nr 2 that I find hard to grasp: What I struggle to understand is why this energy is not all released in the spike, but after the spike by a flat part: section C.

              However I see this behavior also in a Youtube movie I was watching about Mosfet switching when there is a coil (inductor) in the circuit @ 2min 27sec:
              https://www.youtube.com/watch?v=6YOctFtOuwY


              Best regards,
              Rodolphe

              201 - Attachment.pdf

              Comment


              • Hi Rodolphe,

                Those are all good videos to help understand what is happening. They are not exactly, totally, technically correct but they are close enough to gain an understanding of the fundamental concepts.

                (Most of the "current" doesn't actually flow thru the wire but rather around the wire in the aether. What flows thru the wire is the "druid current" which is a very small percentage of the total current flow and moves very slowly from atom to atom by "electrons" entering one end of the wire, aka circuit, aka closed path and an equal number of "electrons" exiting the other end at the same time. We don't even know for sure what "electrons" are. But this is a whole other discussion.)

                It is especially nr 2 that I find hard to grasp: What I struggle to understand is why this energy is not all released in the spike, but after the spike by a flat part: section C.
                In the case of the SSG (which is essentially a pulse motor) the rotation of the rotor magnets past the coil produce a continuous, generated, alternating voltage in the coil. This is superimposed and added to the other voltages in the coil to produce the wave form that we see on the scope. So we have #1 the applied voltage from the battery, #2 the induced back EMF from current flowing "thru" the coil, #3 the induced high voltage spike coil discharge with ringing caused by magnetic field collapse, and #4 the generated voltage supplied by the magnets rotating past the coil. These voltages are all cyclical and add together at the scope probes.

                You can observe the continuous, generated, alternating voltage by leaving the scope hooked up and disconnecting (switching off) the run battery and letting the SSG slowly coast down.

                Gary Hammond,
                Last edited by Gary Hammond; 11-20-2022, 01:14 PM.

                Comment


                • Hi Gary,

                  (Most of the "current" doesn't actually flow thru the wire but rather around the wire in the aether. What flows thru the wire is the "druid current" which is a very small percentage of the total current flow and moves very slowly from atom to atom by "electrons" entering one end of the wire, aka circuit, aka closed path and an equal number of "electrons" exiting the other end at the same time. We don't even know for sure what "electrons" are. But this is a whole other discussion.)
                  True, I’ve read about this phenomena in a couple of books/articles. But thanks for mentioning it


                  In the case of the SSG (which is essentially a pulse motor) the rotation of the rotor magnets past the coil produce a continuous, generated, alternating voltage in the coil. This is superimposed and added to the other voltages in the coil to produce the wave form that we see on the scope. So we have #1 the applied voltage from the battery, #2 the induced back EMF from current flowing "thru" the coil, #3 the induced high voltage spike coil discharge with ringing caused by magnetic field collapse, and #4 the generated voltage supplied by the magnets rotating past the coil. These voltages are all cyclical and add together at the scope probes.
                  On a theoretical level I understand those. However, when in the movie I mentioned in my prevous post (@ 2min 27sec: https://www.youtube.com/watch?v=6YOctFtOuwY), I see that straight section too after the spike. Which made me wonder if that straight part after the spike is not rather a phenomenon of switching of a transistor/mosfet in general (so without a rotor), and if so, why is that particular straight part there after the spike? (to eliminate some parameters; let’s forget about the bedini sg signal, but let’s only look at the mosfet signal in the movie.)

                  Best regards,
                  Rodolphe

                  Click image for larger version

Name:	Screenshot.PNG
Views:	10
Size:	45.4 KB
ID:	73891

                  Comment


                  • Hi Rodolphe,

                    I see that straight section too after the spike. Which made me wonder if that straight part after the spike is not rather a phenomenon of switching of a transistor/mosfet in general (so without a rotor), and if so, why is that particular straight part there after the spike?
                    OK. Remember where the scope probes are attached. The positive, high voltage probe is attached to the drain to coil junction, and the negative (ground) lead is connected at the source to battery negative or junction. Therefor, when the mosfet is OFF and no current is flowing,the measured voltage is the supply voltage which is seen thru the coil. The supply voltage is applied to the top of the coil and is present at the same value at both ends of the coil when no current is flowing. This is what you are seeing after the spike and ringing stop when the mosfet is switched off. The spike and ringing last only a very short time and then only the supply voltage is seen on the scope. The supply voltage is the straight part and is seen until the mosfet turns on again.

                    When the mosfet is turned on, the scope shows nearly zero voltage because the drain and source are at nearly the same voltage with only a very small forward voltage drop. This is a low side switch, which means the coil positive is always at the battery positive voltage and the bottom of the coil is switched on and off to the battery negative or ground. And as stated in the video the voltage at the drain to coil junction is the spike and battery voltage added together. The battery voltage there is either supply positive or ground depending on whether the mosfet is conducting or stopping the current flow.

                    Gary Hammond,

                    Comment


                    • Hi Gary,

                      So clear now what you explained that I don't understand why I overlooked this for so long... but thanks a lot!!

                      Best regards,
                      Rodolphe

                      Comment

                      Working...
                      X